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Certain asymptotic solutions of the equations of motion of a two-rotor 

gyrocompass are discussed in the case where the stiffness of the charac- 
teristic of the restoring moment due to the spring coupling between the 

gyroscopes is large. Use is made of the results obtained in [ l-3 1. 

1. The differential equations of motion of a two-rotor gyrocompass 

obtained in [ 3 1 are of the form 

This motion does not possess the properties of a Geckeler-Anschiitz gyro- 

compass. 

The symbols used in Equation (1.1) are defined in [ 3 1, Equation (2.3). 

The only difference is that the required functions are denoted by a, (4 

y and S. Equations (1.1) can be written down in the form of the follow- 

ing two equations in a and 6: 

a”-+- (Y” - W)u = 2ilhsIlcps’+ sl tBIrp6 

WY-j- (v” - eq 6 = - 2&Q cot cp’-- PQ me qm. 

It was shown in 13 1 that one can set 

(l-3) 
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We recall that PI is the pendulum moment of the gyrosphere, s is the 

stiffness of the characteristic of the restoring couple which depends on 

the spring coupling between the gyroscopes, B is the proper angular 

momentum of the rotor and I$ is the latitude. 

2. Let us assume that the stiffness s is chosen so large that the 

dimensionless parameter c (which is defined by Equation (1.2)) is small 

as compared to unity. The quantities a and 6 can then be written down in 

the form of the series 
CC 

u==cc,* LJ v &nc&, 6=6 o+ $ En& P-1) 

n=1 n-1 

Substituting Equation (2.1) into Equation (1.2) and equating coeffi- 

cients of equal powers of 6, one can successively obtain equations from 

which the functions a,, and 6a can be determined. In particular, a,, and 6, 

are given by 

a;.+ (Y” - LP) a, = 0, 6, = 0 (2.2) 

and, in general, in view of Equations (1.21, (1.3) and (2.1) 

c%=a,+O(s-l), 6 = 0 (0) (2.3) 

where the symbol O(s -l) denotes all the terms of order s-l or higher. 

We shall look upon Equation (2.2) as an asymptotic representation 

(when s + 00, t + 0) of the solutions of Equation (1.1). 

We shall be mainly interested in the behavior of the gyrocompass 

during successive circulations of a ship. In such cases, one can set 131 

61=-pmsinot (p=v/Rucoscp,o=2n/T) (2.4) 

where u is the velocity of the ship in circulation and T is the circula- 

tion period. 

In view of Equation (2.4), the first of Equations (2.2) can be re- 

written in the form 

where 

u,,“+ k (t) u. = 0 

k (t) = v2 (1 - m + m cos 2ot) 
pw 

m=2y, ) 

(2.5) 

(2.6) 
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3. 'Ihe series given by Equation (2.1) were introduced formally with- 

out proving their convergence. It may be assumed that these series will 

converge so long as c < A, where A is a positive constant. 'Ihis condi- 

tion can always be satisfied by choosing s to be sufficiently large. 

In the case of variable or, in particular, periodic coefficients in 

Equation (2.51, .this assumption must, of course, be verified. Moreover, 

one can give a simple mechanical interpretation to the transition to 

Equation (2.2). 

In fact, by increasing the stiffness of the spring between the gyro- 

scopes (and consequently the curvature s), we will deprive the system of 

one of its degrees of freedom, e.g. in the present case, the motions of 

the gyroscopes with respect to the axes of their housings, which are 

characterized by the coordinate 6. It follows that in the limiting case 

one should have 6 = 6 E 0, and this leads to Equation (2.5). 

We present now another method for obtaining Equations (2.2) and (2.3) 

which does not depend on the series given by Equation (2.1). Bearing iu 

mind Equation (2.4), the second equation in (1.2) can be rewritten in 

the form 

ij”+ h26 =- $ p202 co9 2c0t6 + p6P cot cp cos wtci + 2po cot cp sin eta’ (3.1) 

In this equation 

p+_+$ (3.2) 

Assuming that p2 - l/2 p202 > 0. Equation (3.1) leads to the integro- 

differential equation 

6 = cl cos (at + 9,) + ; \ KI (t, E) 6 (5) d% + + \ Ka (t, 5) ~1 (%I d% t 
0 0 

t 

(3.3) 

where C, aud $ are constants and, moreover, 

Kl (t,~)=-_~‘basinJ.(t-_)cos2~~ 

Kp(t, E)= pd wtcpsink(t-%)coso% (3.4) 
K8(t, E)= 2~0 cot cpsinh(t-%)sino% 

Consider a certain interval (0, t*) of the values of t (for example, 

the interval 0, IT/O. which corresponds to the semicirculation of the 

ship). 
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Suppose that Ml, 

la’(t)(, 

Mz and MS are the upper limits of 1 a(t)I , 1 a(t)( , 
respectively, in the interval (0. t’). Equations (3.3) and (3.4) 

give 

I 6 (t) - Cl cos W + W I < + ($ M+W + M$6P ctg g, + 2M@0 ctg ‘p) (3.5) 

It follows from the condition given by Equation (3.5) that for any t 
in the interval (0, t*) one can always find sufficiently large h (or, in 

view of Equation (3.2), sufficiently large s) for the function 6(t) to be 

as close as desired to Cl cos(x t + $G,. The function Cl cos(Xt + $1 will, 

in fact, be the asymptotic representation df 6 for large values of the 

parameter S. 

Substituting this value into the first of the equations in (1.2) we 

obtain an equation for a(t) whose homogeneous part is 

a-+ (v2 - CP) a = 0 (3.6) 

which is identical with Equation (2.2). 

If one is concerned with specific initial conditions for 6, e.g. 

6(O) = 0, 6. (0) = h, then one could similarly obtain the following esti- 

mate for the interval (0, t*): 

18 (t) I< + (h + $ M#LW + M$MlP ctg ‘p + 2Mspo ctgrp ) (3.7) 

4. Let us now return to Equations (2.2) and (2.5). If L?= const, then 

it follows from Equation (2.2) that when 

Q>v (4.1) 

Equation (2.2) has unstable solutions. 

In the more interesting case, corresponding to the circulation of a 

ship, we must start with Equations (2.5) and (2.6). 

From Equation (2.6) we have k(t) I> 0 when m < l/2, which together 

with Equation (2.4) leads to the inequality 

(4.2) 

Assuming that the condition m < l/2 is satisfied, let us apply the 

Liapunov stability criterion to Equation (2.5). According to this 

criterion 
* IW 

v”$ \ (I-m+mcos2ut)dt<4 
; 
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We thus have the condition 

(4.3) 

in which the inequality sign applies for all the practically possible 

relations between T and T,. 

Vquation (4.2) can thus be looked upon as a sufficient condition for 

the non-asymptotic stability of the system. 

5. Let us now consider the conditions for instability. Substituting 

ot = T, Equation (2.5) can be rewritten in the form 

d2a, 
c1z2 + (a -22q cos22)a, = 0 (a= :%(I-rn), 2q = - rn$i) (5.1) 

Substituting a0 = a,(O) + quo(') + q2ao(2) + . . . . for oo(0) we have 

d2a,o 

d+ 
+ act,(O) = 0 (5.2) 

whose solutions are unstable for Q < 0, i.e. using Equations (2.4), (2.6) 

and (5.1) 

(5.3) 

However, the instability of solutions of Equation (5.2) does not, 
strictly speaking, lead to instability for Equation (5.1). In this con- 
nection let us consider the transcendental equation for the character- 
istic index K of Equation (5.1), which is of the form [ 4 ] 

sin2 z = A (0) sin2 _ ItJG (i 3 V/-1) 

In this equation A(O) is the Hill determinant, which we shall cal- 

culate with the aid of the asymptotic formula of Tisserand 14 1: 

A(O)=l+* 
42 CM (Yzn -f/e) 

v/a(i_aa) +0(P) (5.5) 

Since. in practice, T << To, we find that: using Equations (2.6). 
(5.1) and the expansion 

1 ( 9 
cotz=y- $f$‘... ) (O<lzI<n) 

Equation (5.5) can be rewritten in the form 

A (0) 
m2 v2 

s112(m-l) .O ( i (5.7) 

In this equation we must assume II f r, since in the opposite case it 
turns out that a = 0 and Equation (5.5) does not apply. When I f 1, the 
second term in Equation (5.7) is very small as compared with unity for 
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all cases which are of interest in practice. 

For example, when 4 = 70°, v = 24 knots and T = 4 min, we find that 

A(o) = 1 - 253 x lo-‘; when @ = 80°, v= 

A.(o) = 1 - 654 x 16’. 
24 knots, T = 4 min. we have 

In this case, we may assume that A(O) 
gives 

= 1, and hence Equation (5.4) 

x (5.8) 

It follows that when a I> 1, i.e. when the condition given by Equation 

(5.3) is satisfied, we are led to instability, since one of the values of 

K is then positive. 

Equations (4.2) and (5.3) impose rigid conditions on the circulation 
parameters. Thus, for example, when the circulation period T is equal to 

4 min. instability occurs when C$ = 70°, v 19 20.6 knots and when 4 = 80°, 
v > 10.5 knots. 

6. ‘he above theory can be used to study the behavior of a simple pen- 
dular single-rotor gyrocompass during the motion of the ship [II. ‘Ihe 
equations for this compass can be obtained from the equations given in 

[ 2 1 . We thus have (see also 13 1 ) 

In this equation, His the proper angular momentum of the gyroscope 

rotor and C is the moment of inertia of the sensitive element relative 

to the North-South line. 

We note that the last equation in (6.1) was constructed relative to 
the z” axis of the Darboux trihedron oriented as in [ 2 1 . 

In single-rotor gyrocompasses H is usually constant. let us assume in 
addition that V = Ru cos C$ + uE, so that Equation (6.1) leads to 
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If, in Equation (6.2), we neglect the East component of the ship’s 

velocity vE in comparison with Ru c6s 4, together with the terms contain- 

ing “E, vi and 0 on the left-hand sides, and substitute Q = vi/ Ru cos 4 
into the right-hand side of the first of the above equations, we obtain 
the well-known Geckeler-Bulgakov equations for a single-rotor compass 

q 
[l 

is 

in 

Consider now the equations given by (6.2), and assume that the ship 

moving uniformly along a meridian. 

Substituting !A = const, vE = vB’ = 0 into Equation (6.2), and bearing 
mind Equation (6.3), we obtain the following characteristic equation 

for this system: 

?b4+ E(c + gp+ g($)“(g -s+- 0 (6.4) 

If condition k = v is satisfied at a given latitude, then Equation 
(6.4) will assume the form 

i4+ ~(c+32+3L sp) =o 

It follows that when s1> v, the solutions of the system given by E&a- 
tion (6.2) will be unstable. ‘lhe inequality !J> v is clearly identical 
with the inequality (4.1) obtained earlier under similar conditions. 

In studying the behavior of a single-rotor compass during circula- 
tions of the ship. one could use the method described in [3 I. 

Assume that H = (Pl/g)V. Using this equality and setting a = (al&a/V) 
cos 4, we can rewrite Equation (6.1) in the form 

In the case of circulation of the ship. 0 is determined by Equation 
(2.4). In order to obtain the characteristic equation we must have the 
fundamental matrix of solutions of Equation (6.6) at t = T. Let us sub- 

stitute 

into Equation (2.4). 
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The system given by Equation (6.6) can then be rewritten in the form 

(0 < t 6 v/o) 

where 
(6.8) 

(6.3) 

If we look upon the right-hand sides of the equations in (6.8) as 
known functions and apply the method of variation of arbitrary constants, 
we are led to a system of integral equations of the Volterra type, whose 
solutions can be obtained by the method of successive approximations. 

The characteristic equation in first approximation will be 

14+~(C+~)h~+~(~a-n~a)=o (O<t+ (6.10) 

and hence it follows that when Qu> v, i.e. when 

v>+;Rucosp 
0 

(6.11) 

Equation (6.10) will have a positive root. 

The condition given by Equation (6.11) has a similar structure to the 
inequality given by Equation (5.3) and is identical to Equation (4.12) of 

[3 I, which was obtained for a two-rotor gyrocompass. Further calcula- 
tions, designed to obtain an analytical extension of the solutions to 
the interval (R/O, T) and the setting-up of the characteristic equation, 
can be carried out as described in 1.3 1. 

As in the case of the two-rotor compass, the characteristic equation 

of the system given by Equation (6.6) will be recurrent, i.e. of the 
form 

P4 + AIPS + AzP* + AP + 1 = 0 (6.12) 

and the stability regions are hence determined by the Liapunov inequal- 
ities 

-2<Aa<6, 4(A,-2)<Aia<.$+2)2 (6.13) 

7. In conclusion, we note that, as was shown in [3 1, the fulfilment 

of the condition (6.11) in the case of the two-rotor compass does not 

always lead to the instability of the system. 'Ihis result is basically 
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related to the presence in the two-rotor gyrocompass of the gyroscopic 

moment 

r = 2 B sin E, 6 (7.1) 

which stabilizes the gyrosphere with respect to the generalized coordi- 

nate y. In the case of a single-rotor compass, the moment given by Equa- 
tion (7.1) is absent and the coordinate y turns out to be unstabilized. 

It follows that in the case of a single-rotor compass the fulfilment 

of condition (6.11) apparently leads to a general instability of the 
system. ‘Ihis is confirmed by numerical solutions of Equation (6.6) ob- 
tained with the aid of an electronic analog computer. 
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